Search results for "electrical [Condensed matter]"
showing 10 items of 9573 documents
Simple flume with a central baffle
2016
Abstract In this paper the stage-discharge relationship of a flume with a central baffle is theoretically deduced using the Buckingham-Theorem of the dimensional analysis and the self-similarity theory. The new stage-discharge equation is calibrated by the measurements carried out by Peruginelli and Bonacci using a baffle having a given throat length and five different values of the contraction ratio. Finally, for a given throat length, a relationship linking the discharge with the upstream water depth, the contraction ratio and the contracted width is deduced.
Automated Detection of Microaneurysms Using Scale-Adapted Blob Analysis and Semi-Supervised Learning
2014
International audience; Despite several attempts, automated detection of microaneurysm (MA) from digital fundus images still remains to be an open issue. This is due to the subtle nature of MAs against the surrounding tissues. In this paper, the microaneurysm detection problem is modeled as finding interest regions or blobs from an image and an automatic local-scale selection technique is presented. Several scale-adapted region descriptors are then introduced to characterize these blob regions. A semi-supervised based learning approach, which requires few manually annotated learning examples, is also proposed to train a classifier to detect true MAs. The developed system is built using only…
Reflectance Measurement Method Based on Sensor Fusion of Frame-Based Hyperspectral Imager and Time-of-Flight Depth Camera
2022
Hyperspectral imaging and distance data have previously been used in aerial, forestry, agricultural, and medical imaging applications. Extracting meaningful information from a combination of different imaging modalities is difficult, as the image sensor fusion requires knowing the optical properties of the sensors, selecting the right optics and finding the sensors’ mutual reference frame through calibration. In this research we demonstrate a method for fusing data from Fabry–Perot interferometer hyperspectral camera and a Kinect V2 time-of-flight depth sensing camera. We created an experimental application to demonstrate utilizing the depth augmented hyperspectral data to measu…
Time domain symmetry parameters analysis for series arc fault detection
2022
This paper presents a feasibility study of exploiting the symmetry of some parameters for series arc fault detection in electrical circuits. The considered parameters are defined in the time domain and they are based on the current signal derivative and the evaluation of cross-correlation between subsequent observation windows. The analysis is carried out for AC systems, starting from an experimental characterization, which has been carried out in accordance with the Standard UL 1699 requirements for "unwanted tripping tests"and "operation inhibition tests"of arc fault circuit interrupters (AFCIs). The results obtained in different load conditions show that the proposed parameters can be us…
Performance Improvement of Grid-Integrated Doubly Fed Induction Generator under Asymmetrical and Symmetrical Faults
2023
The doubly fed induction generator (DFIG)-based wind energy conversion system (WECS) suffers from voltage and frequency fluctuations due to the stochastic nature of wind speed as well as nonlinear loads. Moreover, the high penetration of wind energy into the power grid is a challenge for its smooth operation. Hence, symmetrical faults are most intense, inflicting the stator winding to low voltage, disturbing the low-voltage ride-through (LVRT) functionality of a DFIG. The vector control strategy with proportional–integral (PI) controllers was used to control rotor-side converter (RSC) and grid-side converter (GSC) parameters. During a symmetrical fault, however, a series grid-side converter…
Multi-Chip RFID Antenna Integrating Shape-Memory Alloys for Detection of Thermal Thresholds
2011
Low-cost wireless measurement of objects' temperature is one of the greatest expectation of radiofrequency identification technology for the so many applications in cold supply-chain control and safety assessment in general. In this context, the paper proposes a dual-chip UHF tag embedding shape memory alloys (SMA) able to transform the variation of the tagged item's temperature into a permanent change of antenna radiation features. This event-driven antenna is hence able to selectively activate the embedded microchips according to the temperature above or below a given threshold. A general design methodology for the resulting two-ports tag antenna is here introduced and then applied to pro…
A Model for the Study of Sheath Currents in Medium Voltage Cables for Industrial Application
2020
In this paper, the implementation of a simulation model for studying the effect of cross-bonding of metallic sheaths and/or non-magnetic armor of single-core medium voltage cables in the same circuit is discussed. With the use of single-core cables, the resistive losses due to the induced circulating currents in cable sheaths or armors causes an increase of cable temperature that reduces its ampacity. In addition, the risk of electric shock due to induced voltages may be present if a person is exposed to the armor/sheath at the unbounded end. For this reason, special bonding techniques are used to significantly reduce these currents. The authors have implemented a model that could be used t…
Image inpainting using directional wavelet packets originating from polynomial splines
2020
The paper presents a new algorithm for the image inpainting problem. The algorithm is using a recently designed versatile library of quasi-analytic complex-valued wavelet packets (qWPs) which originate from polynomial splines of arbitrary orders. Tensor products of 1D qWPs provide a diversity of 2D qWPs oriented in multiple directions. For example, a set of the fourth-level qWPs comprises 62 different directions. The properties of the presented qWPs such as refined frequency resolution, directionality of waveforms with unlimited number of orientations, (anti-)symmetry of waveforms and windowed oscillating structure of waveforms with a variety of frequencies, make them efficient in image pro…
Charge Transport Mechanisms in Heavy-Ion Driven Leakage Current in Silicon Carbide Schottky Power Diodes
2016
Under heavy-ion exposure at sufficiently high reverse bias voltages silicon carbide (SiC) Schottky diodes are observed to exhibit gradual increases in leakage current with increasing ion fluence. Heavy-ion exposure alters the overall reverse current-voltage characteristics of these diodes, leaving the forward characteristics practically unchanged. This paper discusses the charge transport mechanisms in the heavy-ion damaged SiC Schottky diodes. A macro model, describing the reverse current-voltage characteristics in the degraded SiC Schottky diodes is proposed. peerReviewed
Effect of the Si doping on the properties of AZO/SiC/Si heterojunctions grown by low temperature pulsed laser deposition
2020
Abstract The structural and photoelectrical properties of Al-doped ZnO (AZO)/SiC/p-Si and AZO/SiC/n-Si heterojunctions, fabricated at low temperature by pulsed laser deposition, were investigated by means of a number of techniques. Raman analysis indicates that SiC layers have the cubic 3C-SiC phase, whilst X-ray diffraction measurements show that AZO films exhibit a hexagonal wurtzite structure, highly textured along the c-axis, with average crystallites size of 35.1 nm and lattice parameter c of 0.518 nm. The homogeneous and dense surface morphology observed by scanning electron microscopy was confirmed by atomic force microscopy images. Moreover, UV–Vis-NIR spectra indicated a high trans…